
Virtual Memory Support for PIM with Table-based Management

Seung Jae Yong and Eui-Young Chung
Dept. of Electrical and Electronic Engineering

Yonsei University
Seoul, Republic of Korea

rad2minimal@yonsei.ac.kr, eychung@yonsei.ac.kr

Abstract

Processing-in-Memory (PIM) is a technology to

alleviate the memory wall. In the PIM architecture,

there are processing units for data operations in the

memory. Therefore, since data is processed directly

in the memory, there is no need to transfer data

between the CPU and memory, which can reduce

energy consumption and latency associated with

data movement. However, the current operating

system (OS) lacks virtual memory support for the

PIM architecture. Therefore, there is a significant

delay in accessing PIM due to the overhead of the

existing multi-level page table walking every time. In

this paper, we propose a technique for efficiently

mapping virtual addresses to physical addresses in

PIM using table-based management. Our technique

has the advantage of reducing unnecessary delays

and maximizing the use of PIM without any

hardware modifications or support. The proposed

technique is evaluated using a full system simulator,

and the results show that the PIM access time can be

improved by approximately 15.04 times compared to

the existing system.

Keywords: Processing-in-memory, virtual memory

support, operating system, page table, device driver

1. Introduction

Processing-in-Memory (PIM) is a promising

technology [1], [2] that can alleviate the memory

wall problem and significantly enhance the

performance of memory-bound applications. With

PIM, data processing elements are placed in the

memory, which eliminates the need to transfer data

between the CPU and memory since data can be

processed directly in the memory. This leads to faster

and more energy-efficient computation by reducing

energy consumption and latency associated with data

movement.

However, current operating systems (OS) lack

virtual memory support for PIM, and research on this

topic is also inadequate. This is because virtual

memory support for PIM architecture is challenging

due to fundamental differences from traditional

architectures. [2] Developing an OS that efficiently

supports virtual address translation when

programming for PIM architecture is a key issue.

 Therefore, virtual memory support that fully

leverages the capabilities of PIM is imperative.

Additionally, it should be made compatible with

existing address translation systems. One simple

solution is to send all address requests for PIM

operation logic to the virtual address space on the

CPU-side [2]. However, every address translation

results in a significant delay when communicating

with the existing CPU-based address translation

system, particularly in multi-level paging, where

overhead is caused by page table walks as the CPU

has to make multiple memory requests. This limits

the advantages of using PIM.

In this paper, we propose a table-based virtual

memory management technique for PIM architecture.

To handle the page table walking overhead that

occurs in the existing address translation process, we

employ a technique that translates PIM virtual

addresses to physical addresses. This is done with a

lookup table within the PIM device driver each time

the PIM application programming interface (API) is

called in the user space. With this technique, PIM

can be fully utilized without any hardware

modifications or support, and unnecessary delays can

be reduced by minimizing the page table walking

overhead. We evaluate this technique using a full-

system simulator and demonstrate an approximately

15.04 times improvement in PIM access time

compared to existing systems.

2. Background

2.1 Operating system

Virtual Memory. Virtual memory is a

technology that provides each program with its own

memory space by using virtual addresses that are

mapped to physical addresses. The address

translation required for this mapping is performed by

both the hardware and software of the CPU. The

hardware employs a Memory Management Unit

(MMU) to translate virtual addresses to physical

memory addresses, while the software uses the

virtual memory support of the OS to perform address

translation. However, the current OS lacks virtual

memory support and research for PIM architecture.

Page Table. A page table is a data structure used

in computer systems that employ virtual memory.

The OS stores mapping metadata for virtual

addresses used by processes in the page table to

manage them. The page table is organized as a tree

structure, with each node having a data structure

called a page table entry (PTE). The PTE contains

mapping information between virtual and physical

addresses, including page numbers and page frame

numbers.

Typically, the OS uses a 4-level page table to map

a process's virtual address space to a physical address

space. Figure 1 shows the operation of a typical 4-

level page table. Page table walking is performed to

access the physical address space, which incurs

overhead by accessing memory four or more times

for walking a 4-level page table. The problem is that

using CPU-side virtual memory to manage PIM

operations or memory incurs the same overhead.

Therefore, virtual memory support for PIM is needed

to avoid page table walking overhead.

Figure 1. Conventional 4-level page table

Device Driver. A device driver is a software that

provides an interface between the OS and a device.

Among them, a PIM device driver is a device driver

that controls PIM within the kernel space. This

device driver communicates with the memory

controller and sends commands to the PIM for data

processing and computation, separate from the CPU.

It then receives data and computation results

processed inside the PIM and sends them to the CPU.

2.2 Related works

There are several studies [4], [5], [6] on virtual

memory support for partially enabling PIM in actual

systems. During the booting process, they specify

certain physical addresses to enable access to PIM.

Then, they allocate the designated PIM address space

to virtual memory using provided APIs.

However, these studies have the limitation that

the CPU cannot use this memory space for other

purposes, and there are limitations in the memory

footprint and resource efficiency of PIM due to the

limited address space [3]. Additionally, some studies

suggest that processing elements inside PIM can

directly access physical addresses without any virtual

memory support [4], or an additional SRAM buffer

is required to access PIM [5]. These points

demonstrate the limitations of requiring hardware

support and modifications to use PIM.

Therefore, this paper proposes virtual memory

support for PIM that is designed to operate based on

existing hardware using flexible address space

without requiring additional hardware support or

modifications.

3. Proposed scheme

Table-based Management for PIM. In this

paper, we propose a table-based management

technique within the PIM device driver to enable

efficient usage of PIM in user space. Our approach is

aimed at reducing the overhead of page table

walking in the existing CPU-side virtual memory

support. As discussed in Section 2.1, the existing 4-

level page table requires accessing memory more

than four times during the page table walk, which

can cause significant overhead. To address this issue,

our technique quickly translates PIM virtual

addresses to physical addresses, significantly

improving access time to PIM.

When the user accesses PIM or offloads PIM

tasks, our PIM device driver translates the virtual

address of PIM into its physical address. To achieve

this, the PIM device driver refers to a lookup table

within the PIM device driver, separately from the

existing page table. As shown in Figure 2, this

lookup table contains mapping metadata for PIM

physical addresses, enabling access to the desired

PIM physical address by referencing the lookup table

without incurring the overhead of the existing page

table walking.

Figure 3 illustrates how the lookup table operates.

➀ During the kernel boot process, the device driver

initializes to generate the lookup table and allocates

space for it. The device driver then uses memremap()

to map PIM physical addresses to kernel virtual

addresses. The device driver writes the mapping

metadata which contains PIM physical address and

their corresponding 1:1 mapped kernel virtual

address to the lookup table. Then, ➁ when the

PIM_enable API is called from the user space, the

device driver uses mmap() to map each kernel virtual

address to its corresponding user virtual address,

updating metadata for each mapping in the lookup

table. Once all mapping processes are successful, the

device driver sends a ready signal to the kernel,

indicating that PIM is ready for use. At this point, ➂

when the user offloads a PIM task using the

PIM_execute API, the device driver supports the

PIM accelerator to access the required physical

address by referencing the lookup table. It then

performs the offloaded PIM task and sends the

computed result back to the CPU via an interrupt

signal. Since the mapped user virtual address space

should not be changed by the CPU, it needs to be

protected. Therefore, the system call mlock is used to

prevent the user virtual address space from being

mapped differently. ➃ When the user is done using

PIM, the PIM_free API is called, which frees the

user virtual address space by using munmap(),

ensuring the availability and flexibility of the user

virtual address spaces.

Figure 2. Proposed table-based management

Figure 3. Lookup table flow within the PIM

device driver

4. Evaluation

To evaluate the effectiveness of our proposed

technique, we need a simulation environment that

operates on the OS level. Therefore, we implemented

our technique using the gem5 full-system simulator

[7] based on Linux kernel 5.4.49. We constructed the

system using an X86TimingCPU that uses a 4-level

page table. We also implemented a functional PIM

connected to the CPU via the PCI bus. We assumed

that the physical address of the PIM was known and

mapped it to the kernel's virtual address during the

boot process. Additionally, we configured the kernel

to manage the PIM as conventional CPU-side virtual

memory during the boot process. To prevent memory

swap operations, we conducted simulations with

memory footprints of 500 MB, 1 GB, 2 GB, and 4

GB, using a memory size of 8 GB. The simulation

configuration is shown in Table 1, and an overview

of the gem5 full-system simulator we constructed is

provided in Figure 5.

Table 1: Simulation configuration

CPU X86TimingCPU, 1GHz,

4-level page table

OS Linux kernel 5.4.49

Memory DDR4_2400_8x8, 8GB

PIM

DDR4_2400_8x8, 8GB,

PCI-based PE,

PCI-based memory with device

driver

Figure 4. gem5 full system simulator platform

We measured the memory access time of the

existing virtual memory support technique and our

proposed table-based management technique with

memory footprints of 500 MB, 1 GB, 2 GB, and 4

GB using simulation. We changed the kernel

configuration to enable both techniques and

conducted 10 simulations for each memory footprint.

We then calculated the average simulation time for

both techniques and compared the results. Our

technique outperformed the existing method by

reducing the delay caused by the large page table

walking overhead. We also calculated the

performance gain of our technique for each memory

footprint, which showed an average improvement of

approximately 15.04x compared to the existing

method. Figure 5 summarizes our simulation results,

including the simulation time and the performance

gain of our proposed technique. These results

demonstrate the effectiveness and efficiency of our

table-based management technique for PIM.

Figure 5. Simulation results

5. Conclusion

In conclusion, this paper proposed a novel table-

based management technique for PIM virtual

memory support, which significantly reduces the

overhead of page table walks. By using a lookup

table within the device driver, we achieved an

average performance gain of approximately 15.04x

compared to the existing method, without requiring

any hardware modifications or support. Our

approach was evaluated through simulations using

the gem5 full-system simulator, and the results

demonstrate the effectiveness of our proposed

technique. In future work, we plan to investigate

further system software improvements for PIM to

enhance its performance and efficiency.

6. Acknowledgment

This work was supported by Institute of

Information & communications Technology

Planning & Evaluation (IITP) grant funded by the

Korea government (MSIT). (No.2021-0-00754,

Software Systems for AI Semiconductor Design)

References

[1] O. Mutlu, S. Ghose, J. Gómez-Luna, and R.

Ausavarungnirun, "A modern primer on processing

in memory," arXiv preprint arXiv:2012.03112, 2020.

[2] S. Ghose, A. Boroumand, J. S. Kim, J. Gómez-

Luna, and O. Mutlu, "Processing-in-memory: A

workload-driven perspective," IBM Journal of

Research and Development, 2019.

[3] D. Choi, T. Jeong, J. Yeom, and E.-Y. Chung,

"Operand-oriented Virtual Memory Support for

Near-Memory," IEEE Transactions on Computers,

Early Access.

[4] M. Gao and C. Kozyrakis, "HRL: Efficient and

flexible reconfigurable logic for near-data

processing," in 2016 IEEE International Symposium

on High Performance Computer Architecture

(HPCA). IEEE, 2016, pp. 126-137.

[5] M. Alian, S. W. Min, H. Asgharimoghaddam, A.

Dhar, D. K. Wang, T. Roewer, A. McPadden, O.

O'Halloran, D. Chen, J. Xiong, et al., "Application-

transparent near-memory processing architecture

with memory channel network," in 2018 51st Annual

IEEE/ACM International Symposium on

Microarchitecture (MICRO). IEEE, 2018, pp. 802-

814.

[6] L. Ke, X. Zhang, J. So, J.-G. Lee, S.-H. Kang, S.

Lee, S. Han, Y. Cho, J. H. Kim, Y. Kwon, et al.,

"Near-memory processing in action: Accelerating

personalized recommendation with AxDIMM,"

IEEE Micro, 2021.

[7] N. Binkert, B. Beckmann, G. Black, S. K.

Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R.

Hower, T. Krishna, S. Sardashti, et al., "The gem5

simulator," ACM SIGARCH Computer Architecture

News, vol. 39, no. 2, pp. 1-7, 2011.

