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Abstract 
 

Processing-in-Memory (PIM) is a technology to 

alleviate the memory wall. In the PIM architecture, 

there are processing units for data operations in the 

memory. Therefore, since data is processed directly 

in the memory, there is no need to transfer data 

between the CPU and memory, which can reduce 

energy consumption and latency associated with 

data movement. However, the current operating 

system (OS) lacks virtual memory support for the 

PIM architecture. Therefore, there is a significant 

delay in accessing PIM due to the overhead of the 

existing multi-level page table walking every time. In 

this paper, we propose a technique for efficiently 

mapping virtual addresses to physical addresses in 

PIM using table-based management. Our technique 

has the advantage of reducing unnecessary delays 

and maximizing the use of PIM without any 

hardware modifications or support. The proposed 

technique is evaluated using a full system simulator, 

and the results show that the PIM access time can be 

improved by approximately 15.04 times compared to 

the existing system. 
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1. Introduction 
 

Processing-in-Memory (PIM) is a promising 

technology [1], [2] that can alleviate the memory 

wall problem and significantly enhance the 

performance of memory-bound applications. With 

PIM, data processing elements are placed in the 

memory, which eliminates the need to transfer data 

between the CPU and memory since data can be 

processed directly in the memory. This leads to faster 

and more energy-efficient computation by reducing 

energy consumption and latency associated with data 

movement. 

However, current operating systems (OS) lack 

virtual memory support for PIM, and research on this 

topic is also inadequate. This is because virtual 

memory support for PIM architecture is challenging 

due to fundamental differences from traditional 

architectures. [2] Developing an OS that efficiently 

supports virtual address translation when 

programming for PIM architecture is a key issue. 

 Therefore, virtual memory support that fully 

leverages the capabilities of PIM is imperative. 

Additionally, it should be made compatible with 

existing address translation systems. One simple 

solution is to send all address requests for PIM 

operation logic to the virtual address space on the 

CPU-side [2]. However, every address translation 

results in a significant delay when communicating 

with the existing CPU-based address translation 

system, particularly in multi-level paging, where 

overhead is caused by page table walks as the CPU 

has to make multiple memory requests. This limits 

the advantages of using PIM. 

In this paper, we propose a table-based virtual 

memory management technique for PIM architecture. 

To handle the page table walking overhead that 

occurs in the existing address translation process, we 

employ a technique that translates PIM virtual 

addresses to physical addresses. This is done with a 

lookup table within the PIM device driver each time 

the PIM application programming interface (API) is 

called in the user space. With this technique, PIM 

can be fully utilized without any hardware 

modifications or support, and unnecessary delays can 

be reduced by minimizing the page table walking 

overhead. We evaluate this technique using a full-

system simulator and demonstrate an approximately 

15.04 times improvement in PIM access time 

compared to existing systems. 

 

2. Background 
 

2.1 Operating system 
 

Virtual Memory. Virtual memory is a 

technology that provides each program with its own 

memory space by using virtual addresses that are 

mapped to physical addresses. The address 

translation required for this mapping is performed by 

both the hardware and software of the CPU. The 

hardware employs a Memory Management Unit 

(MMU) to translate virtual addresses to physical 

memory addresses, while the software uses the 

virtual memory support of the OS to perform address 

translation. However, the current OS lacks virtual 

memory support and research for PIM architecture. 



Page Table. A page table is a data structure used 

in computer systems that employ virtual memory. 

The OS stores mapping metadata for virtual 

addresses used by processes in the page table to 

manage them. The page table is organized as a tree 

structure, with each node having a data structure 

called a page table entry (PTE). The PTE contains 

mapping information between virtual and physical 

addresses, including page numbers and page frame 

numbers. 

Typically, the OS uses a 4-level page table to map 

a process's virtual address space to a physical address 

space. Figure 1 shows the operation of a typical 4-

level page table. Page table walking is performed to 

access the physical address space, which incurs 

overhead by accessing memory four or more times 

for walking a 4-level page table. The problem is that 

using CPU-side virtual memory to manage PIM 

operations or memory incurs the same overhead. 

Therefore, virtual memory support for PIM is needed 

to avoid page table walking overhead. 

 

 

Figure 1. Conventional 4-level page table 

Device Driver. A device driver is a software that 

provides an interface between the OS and a device. 

Among them, a PIM device driver is a device driver 

that controls PIM within the kernel space. This 

device driver communicates with the memory 

controller and sends commands to the PIM for data 

processing and computation, separate from the CPU. 

It then receives data and computation results 

processed inside the PIM and sends them to the CPU. 

 

2.2 Related works 
 

There are several studies [4], [5], [6] on virtual 

memory support for partially enabling PIM in actual 

systems. During the booting process, they specify 

certain physical addresses to enable access to PIM. 

Then, they allocate the designated PIM address space 

to virtual memory using provided APIs. 

However, these studies have the limitation that 

the CPU cannot use this memory space for other 

purposes, and there are limitations in the memory 

footprint and resource efficiency of PIM due to the 

limited address space [3]. Additionally, some studies 

suggest that processing elements inside PIM can 

directly access physical addresses without any virtual 

memory support [4], or an additional SRAM buffer 

is required to access PIM [5]. These points 

demonstrate the limitations of requiring hardware 

support and modifications to use PIM. 

Therefore, this paper proposes virtual memory 

support for PIM that is designed to operate based on 

existing hardware using flexible address space 

without requiring additional hardware support or 

modifications. 

 

3. Proposed scheme 
 

Table-based Management for PIM. In this 

paper, we propose a table-based management 

technique within the PIM device driver to enable 

efficient usage of PIM in user space. Our approach is 

aimed at reducing the overhead of page table 

walking in the existing CPU-side virtual memory 

support. As discussed in Section 2.1, the existing 4-

level page table requires accessing memory more 

than four times during the page table walk, which 

can cause significant overhead. To address this issue, 

our technique quickly translates PIM virtual 

addresses to physical addresses, significantly 

improving access time to PIM. 

When the user accesses PIM or offloads PIM 

tasks, our PIM device driver translates the virtual 

address of PIM into its physical address. To achieve 

this, the PIM device driver refers to a lookup table 

within the PIM device driver, separately from the 

existing page table. As shown in Figure 2, this 

lookup table contains mapping metadata for PIM 

physical addresses, enabling access to the desired 

PIM physical address by referencing the lookup table 

without incurring the overhead of the existing page 

table walking. 

Figure 3 illustrates how the lookup table operates. 

➀ During the kernel boot process, the device driver 

initializes to generate the lookup table and allocates 

space for it. The device driver then uses memremap() 

to map PIM physical addresses to kernel virtual 

addresses. The device driver writes the mapping 

metadata which contains PIM physical address and 

their corresponding 1:1 mapped kernel virtual 

address to the lookup table. Then, ➁ when the 

PIM_enable API is called from the user space, the 

device driver uses mmap() to map each kernel virtual 

address to its corresponding user virtual address, 

updating metadata for each mapping in the lookup 

table. Once all mapping processes are successful, the 

device driver sends a ready signal to the kernel, 

indicating that PIM is ready for use. At this point, ➂ 

when the user offloads a PIM task using the 

PIM_execute API, the device driver supports the 



PIM accelerator to access the required physical 

address by referencing the lookup table. It then 

performs the offloaded PIM task and sends the 

computed result back to the CPU via an interrupt 

signal. Since the mapped user virtual address space 

should not be changed by the CPU, it needs to be 

protected. Therefore, the system call mlock is used to 

prevent the user virtual address space from being 

mapped differently. ➃ When the user is done using 

PIM, the PIM_free API is called, which frees the 

user virtual address space by using munmap(), 

ensuring the availability and flexibility of the user 

virtual address spaces. 

 

 
 

Figure 2. Proposed table-based management 

 
 

Figure 3. Lookup table flow within the PIM 

device driver 

 

4. Evaluation 
 

To evaluate the effectiveness of our proposed 

technique, we need a simulation environment that 

operates on the OS level. Therefore, we implemented 

our technique using the gem5 full-system simulator 

[7] based on Linux kernel 5.4.49. We constructed the 

system using an X86TimingCPU that uses a 4-level 

page table. We also implemented a functional PIM 

connected to the CPU via the PCI bus. We assumed 

that the physical address of the PIM was known and 

mapped it to the kernel's virtual address during the 

boot process. Additionally, we configured the kernel 

to manage the PIM as conventional CPU-side virtual 

memory during the boot process. To prevent memory 

swap operations, we conducted simulations with 

memory footprints of 500 MB, 1 GB, 2 GB, and 4 

GB, using a memory size of 8 GB. The simulation 

configuration is shown in Table 1, and an overview 

of the gem5 full-system simulator we constructed is 

provided in Figure 5. 

 

Table 1: Simulation configuration 

CPU X86TimingCPU, 1GHz,  

4-level page table 

OS Linux kernel 5.4.49 

Memory DDR4_2400_8x8, 8GB 

PIM 

DDR4_2400_8x8, 8GB, 

PCI-based PE, 

PCI-based memory with device 

driver 

 

 
 

Figure 4. gem5 full system simulator platform 

We measured the memory access time of the 

existing virtual memory support technique and our 

proposed table-based management technique with 

memory footprints of 500 MB, 1 GB, 2 GB, and 4 

GB using simulation. We changed the kernel 

configuration to enable both techniques and 

conducted 10 simulations for each memory footprint. 

We then calculated the average simulation time for 

both techniques and compared the results. Our 

technique outperformed the existing method by 

reducing the delay caused by the large page table 

walking overhead. We also calculated the 

performance gain of our technique for each memory 

footprint, which showed an average improvement of 

approximately 15.04x compared to the existing 

method. Figure 5 summarizes our simulation results, 

including the simulation time and the performance 

gain of our proposed technique. These results 



demonstrate the effectiveness and efficiency of our 

table-based management technique for PIM. 

 
 

Figure 5. Simulation results 

 

5. Conclusion 
 

In conclusion, this paper proposed a novel table-

based management technique for PIM virtual 

memory support, which significantly reduces the 

overhead of page table walks. By using a lookup 

table within the device driver, we achieved an 

average performance gain of approximately 15.04x 

compared to the existing method, without requiring 

any hardware modifications or support. Our 

approach was evaluated through simulations using 

the gem5 full-system simulator, and the results 

demonstrate the effectiveness of our proposed 

technique. In future work, we plan to investigate 

further system software improvements for PIM to 

enhance its performance and efficiency. 
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